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Spectral patterns and ultrafast dynamics in planar acetylene
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Abstract. A diabatic correlation diagram procedure is used to classify energy and intensity patterns in a
planar model for coupled stretches and bends of acetylene using an effective spectroscopic fitting Hamil-
tonian. Analysis with polyad phase spheres accounts for the observed patterns in terms of classical phase
space structure and bifurcations of the normal modes.

PACS. 31.15.-p Calculations and mathematical techniques in atomic and molecular physics
(excluding electron correlation calculations)

1 Introduction

This paper describes using analysis of frequency domain
spectra to obtain information about ultrafast dynamics in
acetylene. In a recent paper [1], we demonstrated that
there are novel energy and intensity patterns in highly
excited bending spectra of acetylene when the usual nor-
mal modes quantum number classification breaks down.
These patterns are identified using a diabatic correlation
diagram technique developed and applied previously [2]
to H2O, with a very partial preliminary account given for
application to acetylene [3]. An approximate assignment
with effective quantum numbers results, giving a classi-
fication into subpolyads, or sequences. These can be fit
with an effective Hamiltonian and analyzed in a classical
phase space picture, giving an account of observed energy
and intensity patterns that goes well beyond the earlier
identification [4–11] of polyads.

In this paper we take an approach similar to refer-
ence [1] for spectral patterns of a model Hamiltonian for
C2H2 which includes the stretches as well as bends, but
in a model confined to the plane. There are several rea-
sons for starting with a simplified planar model. When
the stretches are introduced, the stretch-bend problem
in the plane is essentially as complicated as the three-
dimensional pure bends problem: both involve three non-
linear resonance coupling terms. Furthermore, the planar
model has been of interest in itself, in model studies of co-
herent control [12]. Lastly, a better understanding of the
stretch-bend problem, even in a simplified planar model,
is of pressing interest, because of the possible involvement
of the stretches in the acetylene-vinylidene isomerization
process. The isomerization has been a focus of interest of
the pure-bends spectral analysis [13], yet there is reason
to think from ab initio calculations [14] that the transi-
tion state in the isomerization may involve the stretches
as well as the bends.
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Here we present an exploratory study to see if the kinds
of spectral analysis given in [1] for the pure bends spec-
trum will hold for the stretch-bend system as well – an
expectation that we will see is fully met. Successful re-
sults here for the planar stretch-bend system and in ref-
erence [1] for the three-dimensional bends motivate for
the future a full-scale three-dimensional approach for the
entire spectral system of C2H2 stretches and bends.

We will make use of earlier work [15,16] on single res-
onance systems for interpretation of the multiresonance
planar dynamics. In reference [15], we performed a bifur-
cation analysis of highly excited acetylene bends coupled
by a single Darling-Dennison resonance. This was a simpli-
fied, single resonance model which showed that the bend
spectra exhibit a new type of correlated motion called pre-
cessional modes [17], in addition to the more familiar nor-
mal and local modes. In reference [16], we performed a
similar analysis of the “2345” resonance between bends,
C–C stretch, and antisymmetric C–H stretch. The 2345
resonance comes into play in the present work, but only
as a “bystander” to the bifurcation analysis of the Darling-
Dennison resonance between the bends.

2 Spectroscopic Hamiltonian

The spectroscopic Hamiltonian for the planar stretch-
bend model for vibrations of acetylene consists of a di-
agonal part, Ĥ0, and an off-diagonal part, V̂:

Ĥ = Ĥ0 + V̂. (1)

The diagonal part contains the harmonic and anharmonic
contributions to the vibrational energy levels,

Ĥ0 =
5∑
j=1

ωjnj +
5∑
j=1

5∑
k=j

χjknjnk (2)
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Fig. 1. Resonance lattice of the Darling-Dennison bends coupling V̂DD−bend, Darling-Dennison stretch coupling V̂DD−stretch,
and 2345 Fermi resonance coupling V̂2345, used in planar acetylene model of equation (3).

Table 1. Parameters (in cm−1) for diagonal terms and resonance couplings of planar Hamiltonian; see Section 2.

ω1 = 3398.74 cm−1 χ12 = −12.62 χ24 = −12.48 χ45 = −2.406

ω2 = 1981.71 χ13 = −105.09 χ25 = −1.57 χ55 = −2.335

ω3 = 3316.09 χ14 = −15.58 χ33 = −27.41 g44 = 0.759

ω4 = 609.016 χ15 = −10.85 χ34 = −6.96 g45 = 6.541

ω5 = 729.170 χ22 = −7.39 χ35 = −8.69 g55 = 3.49

χ11 = −25.87 χ23 = −6.10 χ44 = 3.082

KDD−stretch = 105.83 K2345 = 18.28 KDD−bend = 10.00

where ωj is the harmonic frequency for mode j; nj is the
number of vibrational quanta in mode j; and χjk is the
anharmonicity constant between modes j and k.

The off-diagonal part V̂ contains the spectroscopically
significant resonance couplings, i.e. those needed to fit the
data to the desired level of detail and accuracy. Parame-
ters for the coupling strengths are determined in the fitting
of the spectrum.

Many resonances have been detected in acetylene spec-
tra using various excitation techniques [18–21]. With
bends-only excitation, all the spectroscopically important
couplings turn out to be among states with quanta only
in the bend modes [15,22]. For pure bends spectra, im-
portant couplings are of the Darling-Dennison type [23].
In the planar model, there is only one of these, which
we call V̂DD−bend. With excitation of the C–C stretch as
well as the bends, coupling is possible to the C–H stretch
modes. The most important of these is the 2345 resonance
coupling [18,19] V̂2345, which transfers one quantum each
of the C–C stretch ν2, trans bend ν4, and cis bend ν5

to the antisymmetric C–H stretch ν3. Then with involve-
ment of the C–H stretch ν3 via V̂2345, a third important
coupling is the Darling-Dennison resonance between the
stretches, V̂DD−stretch, typically extremely prominent in
coupled stretch systems, because of its connection to the
transition from normal to local modes [31,32]. The stretch-
bend Hamiltonian then is

Ĥsb = Ĥ0 + V̂DD−stretch + V̂DD−bend + V̂2345 (3)

V̂DD−bend = KDD−bend[a†4a
†
4a5a5 + h.c.]

V̂DD−stretch = KDD−stretch[a†1a
†
1a3a3 + h.c.]

V̂2345 = K2345[a†2a3a
†
4a†5 + h.c.]. (4)

The action of the three coupling operators in (3) is de-
picted schematically in the “resonance lattice” of Figure 1.
The values for the spectroscopic parameters, including the
strengths of the three resonance couplings as well as the
diagonal terms of equation (2), are given in Table 1. These
parameters are those reported by Jonas et al. [24], and
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Fig. 2. Simulated spectrum of acetylene polyad originating
from zero-order bright state (0, 5, 0, 14, 0) = (n1, n2, n3, n4, n5)
in five-mode planar model of Hamiltonian (3). Five of the levels
assigned to the “primary” subpolyad by the diabatic correla-
tion diagram method are numbered 1–5 with their assignment
in terms of nominal quantum numbers indicated.

subsequently modified very slightly by Jonas [25]. (The
parameters differ from those used in reference [1] solely
because of the suppression of zero-point terms in the quan-
tum numbers.)

3 Patterns in the coupled stretch-bend
spectrum

Figure 2 shows a simulation of a part of a dispersed fluores-
cence (DF) spectrum using the Hamiltonian (3). In DF ex-
periments, a transition to an upper electronic state is fol-
lowed by a Franck-Condon transition back to the ground
state, resulting in a wave packet-like vibrational excitation
on the ground state, i.e. a superposition of “bright” ex-
cited zero-order vibrational states. Experimental DF spec-
tra of C2H2 with all the excitation in ν2 and the trans-
bend ν4 have been observed by Field and coworkers [6–8,
10,24]. They have analyzed these spectra into polyads of
levels, each polyad labeled by n2 and n4, the quantum
numbers of the zero-order bright state from which the
polyad originates. Algebraic analysis [4–11] shows that the
polyad numbers are good quantum numbers for the spec-
troscopic Hamiltonian, which therefore is block-diagonal.
Figure 2 shows a stick spectrum of the polyad originat-
ing from the zero-order bright state (0, 5, 0, 14, 0) calcu-
lated in the planar model of (3); this is the spectrum for
which we will attempt to detect and interpret spectral
patterns in this paper. The intensities are calculated from
the eigenvectors of the Hamiltonian. The intensities within
the polyad are assumed to originate from the single zero-
order bright state (0, 5, 0, 14, 0) which labels the polyad.
The intensity of each level is determined by the contribu-
tion of the polyad bright state to the given eigenvector. It
is an assumption that each polyad originates from a sin-
gle zero-order bright state; however this simplification has

proven empirically [6–8] to be valid for C2H2 dispersed
fluorescence spectra, similar to the spectra in the planar
model considered here.

The initial intensity in the bright state “fractionates”
into intensities like those in Figure 2 because of the res-
onance couplings, which break the ν2 and ν4 quantum
numbers. Inspection of Figure 2 suggests patterns within
the polyad. It appears that there might be a sequence of
especially intense levels, as well as one or more sequences
of less intense levels.

If so, these patterns must be understood in terms of the
resonance couplings in the Hamiltonian Ĥsb of (3). The ac-
tion of the three coupling operators is depicted schemati-
cally in the “resonance lattice” of Figure 1. From Table 1,
the Darling-Dennison stretch resonance V̂DD−stretch has
by far the largest coupling parameter. However, as seen
in the resonance lattice, the Darling-Dennison bends cou-
pling V̂DD−bend is “primary”, in the sense that it provides
the direct energy transfer mechanism from the zero-order
bright state (0, n2, 0, n4, 0). As such, it is expected to dom-
inate the intensity pattern of the spectrum, a fact which
will play a key role in the analysis to follow. The stretch-
stretch coupling V̂DD−stretch actually plays a minor role
in the intensities, because it is mediated by the coupling
V̂2345.

To unravel these competing effects, we use the diabatic
correlation diagram technique, which has proven [1–3,27]
to be a useful systematic tool to identify and classify pat-
terns such as those in Figure 2.

4 Diabatic correlation assignment

The diabatic correlation technique [1,2] is an empirical
procedure for assignment of a complete, though approxi-
mate and non-rigorous, set of effective or “nominal” quan-
tum numbers. A set of zero-order levels with a complete
set of N good quantum numbers (n1, ..., nN ) is followed
along diabatic curves as a quantum number-breaking per-
turbation is gradually turned on – here, the resonance
terms of (3). The zero-order quantum numbers are car-
ried along as labels for the diabatic levels, so at each point
we possess a set of N labels for each state. To the extent
that these labels have physical meaning, we have an as-
signment of each level in terms of a set of effective or
nominal quantum numbers (n1, ..., nN )nom. These quan-
tum numbers are used to group levels of a polyad into sets
of subpolyads, or sequences, that we expect will bring out
patterns in the energies and intensities.

Figure 2 shows the stick spectrum for polyad
(0, 5, 0, 14, 0). The energy levels of this spectrum are
calculated from the Hamiltonian (3), with the assump-
tions discussed in the preceding section. We focus on
the subpolyad of 8 levels with diabatic assignments
(0, 5, 0, 14, 0)nom, (0, 5, 0, 12, 2)nom, ..., (0, 5, 0, 0, 14)nom.

We call this the “primary” subpolyad because it origi-
nates from the primary coupling pathway out of the zero-
order bright state induced by the Darling-Dennison bend
resonance V̂DD−bend, as depicted in the preceding section
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Fig. 3. (a) The eight levels of the primary subpolyad of acety-
lene polyad of Figure 2, see Section 4; (b) energies and inten-
sities of the fit for the primary subpolyad, see Section 5.

in connection with the resonance lattice of Figure 1. The
levels from the primary subpolyad with sufficient intensity
to be visible in Figure 2 are numbered, and labeled with
their effective or nominal quantum number assignments
(n1, ..., n5)nom.

The calculated spectrum of the entire subpolyad is
shown by itself on an expanded scale in Figure 3a. Two
patterns are evident. First, the energy spacing of adjacent
levels has a minimum between levels 2 and 3. This is rem-
iniscent of the minimum in spacing between levels [28,29]
that corresponds semiclassically to tori that lie on opposite
sides of a phase space separatrix. Second, the intensity is
at a maximum for levels 2 and 3. Do these patterns really
have an origin in the molecular dynamics as understood
in terms of classical phase space structure?

5 Fit of the primary subpolyad

To answer, this, we have fit the primary subpolyad with
a very simple single resonance Hamiltonian:

Ĥfit = ω0
4n4 + ω0

5n5 + χ44n
2
4 + χ45n4n5 + χ55n

2
5

+K[a†4a
†
4a5a5 + h.c.]. (5)

In a fit of subpolyads from various polyads, i.e. with vari-
able polyad number, the form (5) has five independent
diagonal parameters plus the coupling parameter K. An
alternative is to fit the primary subpolyad of just a sin-
gle polyad, in which case (5) has only three independent
diagonal parameters plus the coupling parameter K. We
reported a fit for multiple polyads in reference [1], where
we analyzed together the primary subpolyads of all the
polyads that were fit. Here we present analysis of just one
polyad, based on the fit of its primary subpolyad alone.
Hence, we have a four-parameter fit of the 8 levels of the
primary subpolyad of (0, 5, 0, 14, 0). In itself, this is hardly
a very stringent fit. However, this leaves seven independent
intensities (with one arbitrary overall intensity factor) as
true predictions of the fit. The test of the cogency of the
spectral assignment and fitting procedure is then the pre-
diction of intensities, along with the interpretation in the
next section of the energy and intensity patterns in terms
of phase space structure. The results of the fit for the
both the energies and intensities, shown in Figure 3b, are
obviously very good.

6 Polyad phase sphere

We used the fit to construct a polyad phase sphere [32–34]
for the primary subpolyad, shown in Figure 4. The phase
sphere is a way of representing and visualizing the spec-
trum in phase space. The phase sphere was first developed
for a system of two modes coupled by a single resonance
[32]; didactic presentations can be found in references [33,
34]. The phase sphere projects out the conserved polyad
number and its conjugate angle, leaving a semiclassical
representation of each energy level of a polyad on a re-
duced phase space, which is properly represented on a
surface of spherical topology [35,36].

The sphere in Figure 4 shows considerable phase space
structure, with separatrices dividing regions of vibrational
motion of different character. The three kinds of mo-
tion observed are local and normal bend modes, and the
“precessional modes” identified [15] in a single resonance
model of the acetylene bends as a new kind of vibra-
tional motion for the Darling-Dennison Hamiltonian. The
sphere has a separatrix at the north pole, dividing nor-
mal and precessional modes regions. Near the south pole,
another separatrix divides the normal region from a tiny
local modes region.

How well does the phase sphere account for the ob-
served energy and intensity patterns in Figure 3?

A classical separatrix is predicted [28] to induce a min-
imum in the level spacing. The phase sphere of Figure 4
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Fig. 4. Polyad phase sphere from fit of primary subpolyad
of polyad from fractionation of zero-order bright state (0, 5,
0, 14, 0) of acetylene. Fit is to single resonance Hamiltonian,
described in Section 5. Each quantum level is represented semi-
classically on the sphere as a trajectory. Notation: N normal;
L local; P precessional. The + is the north pole, which semi-
classically corresponds to the pure zero-order bright state (0,
5, 0, 14, 0) without zero-point motion. The points near the east
and west extremities are stable fixed points, corresponding to
the precessional mode overtones.

therefore predicts a minimum in spacing between levels 2,
3 because they are on opposite sides of separatrix. This is
just what is seen in Figure 3.

Next, we consider the intensities. In the zero-order
phase sphere, a circumpolar trajectory near the north pole
corresponds to the quantum zero-order bright state. In
the phase sphere in Figure 4, the states corresponding to
trajectories nearest the north pole are expected to have
the greatest intensity. This is just what is seen: levels 2,
3 are nearest the north pole, and they have the great-
est intensities. Furthermore, the intensity is predicted to
be fractionated strongly among all the states of the sub-
polyad, because the north pole, corresponding to the zero-
order bright state in Ĥ0, lies right at an unstable fixed
point defining the separatrix in Figure 4; the phase sphere
is strongly divided because of the profound effect of the
Darling-Dennison bend coupling in Ĥfit. This fractiona-
tion with intensities descending from levels 2, 3 is exactly
what is observed in Figure 4.

7 Conclusions and outlook

We have shown that spectral patterns directly related
to elementary modes of vibration at high energy can
be identified in the planar stretch-bend multiresonance
model of acetylene with the use of effective quantum num-
ber assignments from diabatic correlation diagrams. We
can reproduce these patterns with an effective Darling-
Dennison resonance Hamiltonian. This leads to a polyad
phase sphere which accounts very well for the detailed
energy and intensity patterns in terms of ideas of phase
space structure and bifurcations of normal modes.

There is no reason to think that these energy and in-
tensity patterns and a coherent account of them should be
limited to the primary subpolyads. An attempt to treat
the complete spectrum – not just the primary subpolyads
– along the lines developed here appears highly desirable.

However, this will require methods that go beyond
those used here. The fit of (5) used a zero-order en-
ergy formula given in the standard way by terms linear
and quadratic in the zero-order quantum numbers. The
price we pay for using the simplified zero-order energy
formula (5) is that we can only fit a subset of levels of
the entire spectrum – otherwise a multiresonance fitting
Hamiltonian like Ĥsb of (3) would not have been necessary
in the first place.

Simultaneously with the work of this paper and of ref-
erence [1], we have been developing a “dressed basis” ap-
proach [27] for complex spectra of highly excited molecular
vibrations. In the dressed basis method, a zero-order basis
is dressed by all the resonance couplings in the effective
Hamiltonian, except for a residual coupling V̂i. Acting
within subpolyads of the dressed basis, an effective cou-
pling V̂eff

i is defined in correspondence to the residual V̂i.
The goal of the dressed basis is to incorporate as much
as possible the effects of nonintegrability and chaos, while
retaining much of the simplicity of integrable systems via
the effective residual single resonance coupling V̂eff

i . Nu-
merical testing [27] shows that the procedure works re-
markably well.

We regard the fit here of the primary subpolyad to
the simplified form (5) as incorporating some aspects of
a full dressed basis analysis. If successful, a dressed basis
fit of the entire spectrum should be useful in conjunc-
tion with the diabatic correlation technique in illuminat-
ing the complete spectral pattern, as well as connections
with concurrent bifurcation analysis of the spectroscopic
Hamiltonian. Steps toward bifurcation analysis for vari-
ous subsystems of acetylene have been taken by several
authors [41–43]. The bifurcation analysis of the full three-
dimension stretch-bend acetylene system is clearly feasible
along the analytical lines developed previously [34,38–40].
A further challenge will be to use the acetylene dressed
basis and bifurcation analysis to elucidate the pathway of
the acetylene-vinylidene isomerization. The power of bi-
furcation analysis of spectra for ultrafast intramolecular
rearrangement processes has already been demonstrated
for the isomerization spectrum of HCP [29].

This work was supported by the Department of Energy
Basic Energy Sciences program under Contract DE-FG03-
98ER14848.
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